
Dale Wheat

October 2019

Dallas Makerspace

v1.11

▪ Introduction

▪Software installation

▪Software configuration

▪Exercises

▪Conclusion

▪ What is STM32?

▪ How to use STM32-specific development software

▪ How to program simple embedded programs in C

▪ How to debug your programs

▪ How to add simple peripherals to STM32

▪ Product of STMicroelectronics • st.com

▪ A family of 32-bit Flash microcontrollers

▪ Based on Arm® Cortex®-M processors • arm.com

https://www.st.com/
https://www.arm.com/products/silicon-ip-cpu

▪ Cortex-M3 announced by ARM Holdings in 2004

▪ ARM Cortex-M uses ARMv7-M microarchitecture
(not to be confused with ARM7 devices)

▪ First devices to market were Luminary Micro LM3S101 & LM3S102

▪ Cortex-M0

▪ Cortex-M0+

▪ Cortex-M1

▪ Cortex-M3

▪ Cortex-M4

▪ Cortex-M7

▪ Cortex-M23

▪ Cortex-M33

▪ Cortex-M35P

▪ A brief introduction to STM32

▪ An understanding of how it compares to other available solutions

▪ Access to STM32-specific development software

▪ Sources for STM32 hardware

▪ Optional: Your very own STM32 experimenter’s starter kit

▪ Yes

▪ A microcontroller executes user’s programs

▪ Small form factor

▪ Low cost

▪ Modern tools make it simple to learn and use

▪ Widely documented on the Internet

▪ No

▪ Arduino is based on Atmel AVR 8-bit architecture at 16 MHz

▪ STM32 is based on Arm® Cortex®-M 32-bit architecture at 32 MHz to 480 MHz

▪ Not all STM32 software is open source

▪ Check your kit for the following items:

▪ Solderless breadboard containing:

▪ STM32 “Blue Pill” board

▪ ST-LINK V2 USB interface

▪ Four push buttons

▪ Rainbow-colored jumper wires

▪ USB to TTL serial adapter

▪ USB cable (A to Micro-B)

▪ Bag of LEDs and resistors

▪ LCD module

▪ Low cost, generic ARM development module

▪ Based on STM32F103C8T6

▪ 40 pin DIP (dual in-line package)

▪ Headers are usually optional

▪ Connection to blue pill (4 wires)

▪ GND – ground reference

▪ SWCLK – clock

▪ SWDIO – data

▪ 3V3 – 3.3V power

▪ The ST-LINK/V2 device programmer should already be connected to your Blue Pill

▪ Don’t disconnect it if you don’t have to!

▪ Spring-loaded sockets hold wires in place

▪ Red lines indicate electrical connections

▪ Always unplug the ST-LINK/V2 from the USB port when making wiring updates.

▪ Do not add or remove components when board is powered on.

▪ STM32CubeIDE application

▪ Additional source code

▪ LCD example code

▪ Code from exercises

▪ Install STM32CubeIDE application

▪ File: en.st-stm32cubeide_1.0.2_3566_20190716-0927_x86_64.exe.zip

▪ Webpage: https://www.st.com/content/st_com/en/products/development-tools/software-
development-tools/stm32-software-development-tools/stm32-ides/stm32cubeide.html

▪ To download the software from the ST web site, you will need to register

▪ Just copy the installation file from the instructor

▪ Installation is reported to require 6 GB of available hard drive space

https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-ides/stm32cubeide.html

▪ Execute the installation program

▪ This “Welcome” screen appears

▪ Click “Next >”

▪ Click “I Agree”

▪ Please use suggested location:
“C:\ST\STM32CubeIDE_1.0.2”

▪ This is the “workspace”

▪ It doesn’t like spaces 

▪ Click “Next >”

▪ Leave all three components
selected

▪ Click “Install”

▪ Click “Install”

▪ Repeat two more times

▪ Installation now begins

▪ This screen-shot is not right 

▪ Hopefully you get to this screen

▪ Click “Next >”

▪ Leave option checked:

▪ “Create desktop shortcut”

▪ Click “Finish”

▪ A brief detour for high DPI monitors

▪ Right-click the desktop icon

▪ Select “Properties” from the context menu

▪ Click on the “Compatibility” tab

▪ Click the “Change high DPI settings” button

▪ Check the
“Override high DPI scaling behavior”
box

▪ Choose “System” from the
drop-down list box.

▪ Click “OK”

▪ Click the “OK” button
on the “Properties” dialog box.

▪ <end of high DPI settings detour>

▪ Double-click on the desktop icon to start the
STM32CubeIDE application

▪ Check the box labeled “Use this as the default and do not ask again”

▪ Click “Launch”

▪ Adjust as you see fit

▪ Click the “Allow access” button

▪ You might get this message

▪ Check the “Remember my decision” box

▪ Click “Yes”

▪ Maximize the window

▪ Click “Start New STM32 project”

▪ Wait for “Target Selection” window to populate

▪ It can take a while

▪ In the search field,
type “STM32F103”

▪ Select “STM32F103C8”
from the drop-down list box

▪ This is the chip on the Blue Pill

▪ Click on the “STM32F103C8”
line in the MPU List

▪ Click “Next >”

▪ Type “Blue Pill” in the
“Project Name:” field

▪ We will use this “project”
as the basis for other projects

▪ Click “Finish”

▪ Check the “Remember my decision” box

▪ Click “Yes”

▪ Must wait 

▪ It’s OK

▪ It’s doing an amazing amount
of work for us right now

▪ STM32CubeMX is a device
configuration tool

▪ This is the main STM32CubeMX
screen, showing the
“Pinout & Configuration” tab

▪ Click on the “System Core” category

▪ Select the “SYS” item

▪ This brings up the
“SYS Mode and Configuration” panel

▪ From the “Debug”
drop-down list,
select “Serial Wire”

▪ Note that some of the pins
in the “Pinout view” tab
have changed

▪ We will use Serial Wire Debug
(SWD) to program the chip

▪ Close the
“SYS Mode and Configuration”
panel by clicking on the
left arrow
(right under the “v Pinout” tab)

▪ The Blue Pill has an LED
connected to pin PC13

▪ “PC13” means Port C, pin 13

▪ Port C is a GPIO pin, or
“General Purpose Input/Output”

▪ Type “pc13” into the
search field
in the Pinout view

▪ Note that the PC13 pin
begins to flash
on the chip diagram

▪ Click on the PC13 pin on the diagram

▪ Select “GPIO_Output”
in the context menu

▪ This will tell the STM32CubeMX
code generator to initialize this pin
as a “general purpose output”,
which is what we need to flash
the LED that is connected to it

▪ Note that the PC13 pin
now has a green background,
indicating that it is now
properly configured

▪ Right-click the PC13 pin
and select “Enter User label”
from the context menu

▪ Enter “LED” and press [ENTER]

▪ Note the label next to PC13
has changed to “LED”

▪ This name will also be reflected
in the generated code

▪ Click the “Device Configuration Tool Code Generation” toolbar icon (gear icon)

▪ The STM32Cube MX application now writes all the code for the project

▪ Now plug the ST-LINK device programmer into your laptop

▪ The power LED on your Blue Pill should light up

▪ Another LED might be on or blinking as well

▪ Click the “Debug” toolbar icon

▪ The “Edit launch configuration properties”
dialog appears

▪ Click “OK”

▪ You might get another “Windows Security Alert”

▪ Click “Allow access”

▪ The “Confirm Perspective Switch” dialog appears

▪ Check “Remember my decision”

▪ Click “Switch”

▪ Now we see some code!

▪ If all goes well, the application compiled the generated code, downloaded it to the
device and started a debug session. The program is now halted at the first executable
line in the main() function and awaits your command.

▪ Notice that the line 76 has a green background. That is the next line of code to be
executed. It should be a call to the HAL_Init() function, to initialize the Hardware
Abstraction Layer (HAL).

▪ Click the “Step Over (F6)” toolbar icon

▪ The green background should now
highlight line 83, a call to the
SystemClock_Config() function

▪ This proves that the toolchain is working
and properly configured ☺

▪ Click the “Terminate (Ctrl+F2)” toolbar icon (red square)

▪ This stops the debug session

▪ Close the STM32CubeIDE application

▪ Check the “Remember my decision” box

▪ Click “Exit”

▪ Your STM32CubeIDE software is installed and configured correctly

▪ We now take a short break ☺

▪ There is no console to which we can “print” anything… yet

▪ We will blink the built-in LED on GPIO pin PC13

▪ No jumpers are required for this experiment

▪ Connect ST-LINK/V2 device to USB port (if it is not already still connected)

▪ Observe fast blink rate of PC13 (~5 Hz) – but only on a brand-new Blue Pill

▪ This is the absolute minimum code needed to blink an LED

▪ It is quite cryptic at first glance

▪ You need to have access to the 1,000+ page data sheet to find all the information

RCC->APB2ENR = RCC_APB2ENR_IOPCEN; // enable GPIO port C

GPIOC->CRH = GPIO_CRH_MODE13; // PC13 = output, 50 MHz

while(1) {

GPIOC->BSRR = GPIO_BSRR_BS13; // LED off

GPIOC->BRR = GPIO_BRR_BR13; // LED on

}

▪ Restart the STM32CubeIDE application

▪ It remembers where we left off

▪ Double-click on the “Blue Pill” project
in the Project Explorer panel

▪ Double-click on the “Blue Pill.ioc” file

▪ This opens the CubeMX perspective

▪ Let’s make one small change here

▪ Click on the “System View” tab

▪ (instead of the “Pinout View” tab)

▪ Click on the “GPIO” button

▪ Now we see the
“GPIO Mode and Configuration”
panel

▪ We have configured a single
GPIO pin, PC13

▪ Its full name is
“PC13-TAMPER-RTC”

▪ Click on its line to reveal options

▪ Change “GPIO output level” from “Low” to “High”

▪ Click the “Save (Ctrl+S) toolbar button

▪ For you youngsters, that’s a “floppy disk”

▪ Check the “Remember my decision” checkbox

▪ Click “Yes”

▪ Click the “Debug Blue Pill.ioc” toolbar button

▪ Once the “Debug Perspective” loads, click the “Resume (F8)” toolbar icon

▪ Observe that the second LED (not the Power LED) is now off

▪ But why?

▪ A GPIO can be configured as a digital output pin

▪ It can be programmed to be either “high” or “low”

▪ Its output state can be changed at any time

▪ On the Blue Pill, the LED connected to PC13 is configured as “active low”

▪ This means the LED turns on when the output pin is “low”

▪ When the output pin is “high”, the LED turns off

▪ The opposite is true for the Arduino’s Uno’s D13 pin (LED_BUILTIN)

▪ It is on when the output is “high” and off when the output is “low”

▪ Both systems work just fine – just be sure you know which one you have!

▪ Click the “Terminate (Ctrl+F2)” toolbar icon

▪ The “C/C++” perspective returns

▪ Now it’s time to add our own code

▪ The STM32CubeMX code generator will preserve “user code” when in the right place

▪ These areas are indicated by comments in the generated code, e.g.,

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

▪ Code between these two comments will be preserved

▪ Any code you write elsewhere will be over-written the next time code is generated

▪ In the file “main.c”, there is a function called “main()”

▪ It is the starting point for all programs written in the C language

▪ In reality, some initialization stuff happens before the main() function is called

▪ Let’s take a look at out main() function in more detail

▪ Here’s what our main() function looks like, stripped of all non-executable comments:

int main(void) {

HAL_Init();

SystemClock_Config();

MX_GPIO_Init();

while (1) {

}

}

▪ First it calls some initialization functions

▪ Then goes into an endless loop

▪ Let’s take a closer look at the while() loop in our main() function

/* USER CODE BEGIN WHILE */

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}

/* USER CODE END 3 */

▪ We see two areas for “user code” where we can add some code

▪ (that won’t get over-written by the code generator!)

▪ Why write when you can steal? ☺

▪ Scroll down to line 154 in main.c

▪ It looks like this:

HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);

▪ This is a call to the function HAL_GPIO_WritePin()

▪ This comes from ST’s HAL (Hardware Abstraction Layer) library

▪ It has a similar function as Arduino’s digitalWrite() function

▪ It takes as parameters a port, a pin and a state

▪ Highlight this entire line of code and copy it

▪ Paste the stolen code into the while() loop within the main() function at line 102:

▪ Paste it again

▪ It should look like this:

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);

}
/* USER CODE END 3 */

▪ Change the last parameter (state) in the second HAL_GPIO_WritePin() function call

/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);

HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);

}

/* USER CODE END 3 */

▪ Click the “Debug main.c” toolbar icon

▪ Since we have unsaved code changes,
we are now reminded

▪ We are also given the opportunity to always
automatically save changes
before debugging, which is handy

▪ Check the “Always save…” checkbox

▪ Click “OK”

▪ The Debug perspective appears

▪ As before, the HAL_Init() function
is highlighted

▪ Click on the “Step Over (F6)”
toolbar icon

▪ Keep clicking until you get into
the while() loop

▪ Observe the LED

▪ GPIO_PIN_RESET = LOW = ON

▪ GPIO_PIN_SET = HIGH = OFF

▪ Click on the “Resume (F8)” toolbar icon

▪ Observe the LED again

▪ It appears to be on, but is in fact blinking so fast you can’t see it

▪ Let’s slow it down a bit

▪ Click the “Terminate (Ctrl+F2)” toolbar icon

▪ Type the following line of code between the two HAL_GPIO_WritePin() function calls:

HAL_Delay(250);

▪ Note: Capitalization counts!

▪ The parameter (250 in this case) is the number of milliseconds to delay

▪ Type it again (or just copy what you already typed) after the second
HAL_GPIO_WritePin() function call

▪ That section should look like this now:

HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
HAL_Delay(250);
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);
HAL_Delay(250);

▪ Click the “Debug main.c” toolbar icon

▪ Once the Debug perspective loads, click the “Resume (F8)” toolbar icon

▪ Observe the LED

▪ It should be blinking about two times per second (~2 Hz)

▪ Once the novelty fades, click the “Terminate (Ctrl+F2)” toolbar icon

▪ Select one of the LEDs from the kit package (red, green or blue)

▪ Also get one of the included resistors from the LED package

▪ They are all the same value

▪ Install the LED and resistor per the live demonstration

▪ Add a jumper wire from GPIO pin A0 to LED anode

▪ Use the resistor as a jumper from the LED cathode to the breadboard ground rail

▪ Select the “Device Configuration Tool” perspective

▪ Select the “Blue Pill.ioc” tab in the editor panel

▪ Select the “Pinout View” tab

▪ Type “PA0” into the search tool

▪ GPIO pin PA0 begins to blink in the diagram

▪ Click on the PA0 pin

▪ Select “GPIO_Output” from the context menu

▪ Right-click PA0 and select “Enter User Label”

▪ Enter “LED2” and press the [Enter] key

▪ Click “Save (Ctrl+S)” toolbar icon

▪ Select the “C/C++” perspective

▪ Select the “main.c” tab in the editor

▪ Copy line 102:
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);

▪ Paste as line 103

▪ Change “LED_” to “LED2_” in two places:
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);

▪ Copy this new line (line 103) and paste as line 106

▪ Change “_RESET” to “_SET”
▪ HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);

▪ The new code within the while() loop should look like this now:

HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);

HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);

HAL_Delay(250);

HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);

HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);

HAL_Delay(250);

▪ Click the “Debug main.c” toolbar icon

▪ Once the “Debug” perspective loads, click the “Resume (F8)” toolbar icon

▪ Observe the two LEDs blinking

▪ We connected the second LED as “active high”

▪ The new LED turns on when the output level is “high”

▪ It should be on when the on-board LED is off, and vice versa

▪ Once this no longer “sparks joy”, click the “Terminate (Ctrl+F2)” toolbar icon

▪ We told the STM32 to blink some LEDs and it is doing exactly that

▪ It is also doing absolutely nothing else at the same time

▪ besides taking up space, consuming power and contributing the to heat death of the universe

▪ The STM32 has many peripheral devices that could help us here

▪ For example, we could set up a timer to periodically interrupt our “foreground task”

▪ In the “interrupt handler” routine, or “background task”, we put the code to blink LEDs

▪ This would leave the foreground task free to do other work without LED timing concerns

▪ The STM32F103C8 has three general purpose timers and one “advanced” timer

▪ All of these timers can blink the LEDs directly using pulse-width modulation (PWM)

▪ A pulse-width modulated signal is a periodic (i.e., repeating) signal with a duty cycle

▪ The duty cycle is the ratio of how long the signal is “on” compared to the period

▪ For example, a “50% duty cycle” is on half the time, and then off the other half

▪ PWM signals have many uses in electronics, not just blinking LEDs

▪ Let’s configure a timer to blink our new LED

▪ It’s no coincidence that we chose PA0 to drive the additional LED

▪ Select the “Device Configuration Tool” (CubeMX) perspective

▪ Select the “Blue Pill.ioc” tab in the editor

▪ Select the “Pinout view” tab, if it is not already showing

▪ Click PA0 pin (LED2) in the diagram

▪ Select “TIM2_CH1” in the context menu

▪ This changes the function of pin PA0 (Port A, pin 0)

▪ Previously it was GPIO_Output, and we used code to turn the LED on and off

▪ Now PA0 is connected to Timer2

▪ Timer2 has four independent PWM channels – we have selected channel 1

▪ Right-click PA0, select “Enter User Label” and type “LED2” again (the name was lost)

▪ Under “Timers”, select “TIM2”

▪ Configure the “Mode” settings

▪ For “Clock Source”, select “Internal Clock”

▪ For “Channel 1”,
select “PWM Generation CH1”

▪ In the “Configuration” section…

▪ Some window adjustments
may be required

▪ For “Prescaler”, enter “65000”

▪ For “Counter Period”, enter “123”

▪ For “Pulse”, enter 30

▪ Click the “Save (Ctrl+S)”
toolbar icon

▪ This generates the new code

▪ Timers do not start automatically

▪ We will add code (one line) to start Timer2’s Channel 1 in PWM mode

▪ Select “C/C++” perspective

▪ Select “main.c” tab in editor

▪ Note line 93 was added: MX_TIM2_Init();

▪ On line 95, add this line of code (within the “USER CODE BEGIN 2” section):

HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);

▪ Click on “Debug main.c” toolbar icon

▪ Click “Resume (F8)” toolbar icon

▪ Observe LED blinking pattern

▪ The on-board LED is still blinking at ~2 Hz

▪ The off-board LED is now blinking in a different pattern

▪ …even though we did not remove the code from the while() loop

▪ Once we assigned pin PA0 to TIM2_CH1, it is no longer connected to GPIO Port A

▪ PA0 is entirely controlled by the timing parameters we selected for Timer2 (TIM2)

▪ PWM signals require three main parameters to be specified

1. A clock source (we selected “Internal Clock”) and prescaler (we chose “65000”)

2. A period (we chose “123”)

3. A duty cycle (or “pulse”; we chose “30”)

▪ The combination of clock source and prescaler determine the speed of the timer

▪ The default clock speed of the STM32F103 is 8 MHz (8,000,000 cycles per second)

▪ This is generated internally on the STM32F103 chip using the HSI oscillator

▪ HSI stands for “High Speed Internal” oscillator

▪ No external components are required

▪ Clock accuracy is around ±2% over the entire temperature range (-40°C to 105°C)

▪ This clock source is then divided by the value contained in the prescaler

▪ Since we selected a value of “65000” (it could be anything from 0 to 65535),
the resulting clock frequency driving Timer2 is:

8,000,000 𝐻𝑧 ÷ 65,000 ≈ 123.0769 𝐻𝑧

▪ We chose a value of “123” for the period of Timer2

▪ This results in Timer2 completing a cycle approximately once every second

▪ We chose a value of “30” for the duty cycle, or the “on” portion of the signal

▪ This means that the LED is on for around a quarter of the time,
and off for the remaining three-quarters of the cycle

▪ You should see this reflected in the blinking pattern on LED2

▪ The Blue Pill contains an 8 MHz quartz crystal
with much better speed tolerance than the HSI
▪ Typical tolerances for quartz crystals are measured

in “parts per million” instead of percent

▪ The STM32F103 contains a phase-locked loop
(PLL) that can multiply the clock frequency

▪ Select the “Device Configuration Tool”
perspective

▪ Select the “Blue Pill.ioc” tab in the editor

▪ Under “System Core”, select “RCC”

▪ For “High Speed Clock (HSE)”,
select “Crystal/Ceramic Resonator”

▪ Select the
“Clock Configuration” tab

▪ Behold the “Clock Tree”
in its default configuration

▪ You can zoom in and out

▪ The possible clock sources
are on the left side

▪ Routing options are in the
middle part

▪ The resulting clock(s) are on
the right side (in blue boxes)

▪ For “PLL Source Mux”,
select “HSE”

▪ For “*PLLMul”, select “X 9”

▪ For “System Clock Mux”,
select “PLLCLK”

▪ For “APB1 Prescaler”,
select “/ 2”

▪ APB1 can only run at 36 MHz

▪ Now the chip will run at 72 MHz

▪ Click the “Save (Ctrl+S)” toolbar icon

▪ This triggers new code generation

▪ Once the new code is generated, click the “Debug main.c” toolbar icon

▪ Once the Debug perspective loads, click the “Resume (F8)” toolbar icon

▪ LED2 is now flashing much faster

▪ About nine times faster

▪ The original LED is still blinking at ~2 Hz

▪ That’s because the HAL_Delay() function knows the current clock frequency

▪ The parameter we supplied (250) is number of milliseconds to delay, or about ¼ of a second

▪ Connect a jumper wire from GPIO pin A1 to top-left pin on yellow push button

▪ There should already be a jumper installed from the other button pin to the ground rail

▪ Select the “Device Configuration Tool” perspective

▪ Select the “Blue Pill.ioc” tab in the editor

▪ Use the search tool to find pin PA1

▪ All matching pins start to blink

▪ Click on pin PA1 and select “GPIO_Input”

▪ Right-click on PA1 and select “Enter User Label”

▪ Enter “button”

▪ Select “System view” tab

▪ Click “GPIO” button

▪ Click on pin “PA1” line

▪ For “GPIO Pull-up/Pull-down”,
select “”Pull-up”

▪ Click the “Save (Ctrl+S)”
toolbar icon

▪ This generates new code

▪ Select the “C/C++” perspective

▪ Select the “main.c” tab in the editor

▪ Add the following code after line 110:

if(HAL_GPIO_ReadPin(button_GPIO_Port, button_Pin) == GPIO_PIN_RESET) {

TIM2->CCR1 = 60;

} else {

TIM2->CCR1 = 0;

}

▪ Click the “Debug main.c” toolbar icon

▪ Once the Debug perspective loads, click the “Resume (F8)” toolbar icon

▪ Test the effects of button presses on LED2’s output

▪ Analysis:
▪ When the button is not pressed, no electrical connection is made with input pin PA1

▪ Since we configured a “pull-up” resistor to be active on this input, it now reads as “high”

▪ When the button is pressed, PA1 is connected to ground, and now reads as “low”

▪ The HAL_GPIO_ReadPin() function returns the constant value GPIO_PIN_RESET (or 0)

▪ Hover your mouse pointer over GPIO_PIN_RESET to see for yourself

▪ This sets the duty cycle of TIM2_CH1 to “60”, which is flashing

▪ Otherwise, the duty cycle is set to “0”, or always off

▪ Click the “Terminate (Ctrl-F2)” toolbar icon when you grok in fullness

▪ The STM32F103C8 device supports a USB Full Speed (FS) interface for devices

▪ It does not support “USB host” mode

▪ STM32CubeMX will supply basic code for six (6) types of device classes:

▪ Audio

▪ Communication (virtual serial port)

▪ Download Firmware Update (DFU)

▪ Human Interface Device (HID)

▪ Custom Human Interface Device

▪ Mass Storage

▪ Step by step video from “Hugatry's HackVlog” for setting up a USB CDC:

▪ https://www.youtube.com/watch?v=YZjnCOun1wU

https://www.youtube.com/watch?v=YZjnCOun1wU

▪ Select the “Device Configuration Tool” perspective

▪ Select the “Blue Pill.ioc” tab in the editor

▪ Under “Connectivity”, click on “USB”

▪ Check the “Device (FS)” checkbox

▪ Under “Middleware”, select “USB_DEVICE”

▪ For “Class For FS IP”, select
“Communication Device Class
(Virtual Port Com)”

▪ Select the “Clock Configuration” tab

▪ You may have noticed that the tab had a red X on it

▪ We will fix that problem right now

▪ The application will offer to help

▪ Click “No” for now

▪ Find the error on the Clock Tree

▪ For “USB Prescaler”, select “/ 1.5”
from the drop-down menu

▪ USB Clock is now 48 MHz ☺

▪ Click the “Save (Ctrl+S)” toolbar icon

▪ The STM32CubeIDE has added several files to your project
to support USB

▪ You can find them using the “Project Explorer” panel

▪ We will be adding code to both your main.c file
as well as the usbd_cdc_if.c file

▪ Select the “C/C++” perspective

▪ Select the “main.c” tab in the editor

▪ After line 26 (USER CODE BEGIN Includes), add the following line:

#include "usbd_cdc_if.h"

▪ After line 98 (USER CODE BEGIN 2), add the following two lines:

HAL_Delay(1000);

CDC_Transmit_FS((uint8_t *)"Hello, world\r\n", 14);

▪ After line 122 (inside the while() loop), add the following line:

CDC_Transmit_FS((uint8_t *)"Tick\r\n", 6);

▪ In the “Project Explorer” panel, double-click the usbd_cdc_if.c file

▪ This will open the file in a new tab in the editor

▪ After line 265 (USER CODE BEGIN 6), add the following line:

if(Buf[0] == ‘?') CDC_Transmit_FS((uint8_t *)“!", 1);

▪ Click the “Debug usbd_cdc_if.c” toolbar icon

▪ Click the “Resume (F8)” toolbar icon

▪ Connect your Blue Pill to your laptop with the USB cable provided

▪ Allow a device driver for the Virtual Serial Port to be installed

▪ Open a serial terminal (Tera Term, PuTTY, whatever you like)

▪ Select the newest or highest numbered COM port

▪ Use Device Manager/Ports to determine the correct port to use

▪ Baud rate does not actually matter here

▪ Observe a periodic “Tick” message to scroll down the terminal window

▪ Type the question mark key “?”

▪ The STM32 should reply with an exclamation point “!”

▪ When the novelty fades, click the “Terminate (Ctrl+F2)” toolbar icon

▪ Note: This is an extra credit experiment, as class time permits

▪ Remove the smaller static-dissipative bag containing LCD from the kit

▪ Note: The smaller bag contains both the LCD and a small resistor

▪ Install the LCD on the breadboard as shown on screen

▪ Only twelve (12) of the sixteen (16) LCD connections are required

▪ This exercise requires great peace of mind

▪ Connect LCD pin 1 (VSS) to ground rail

▪ Connect 5.0V pin on ST-LINK/V2 to lower-left power rail

▪ Connect LCD pin 2 (VDD) to 5.0V rail

▪ Connect LCD pin 3 (VO) to ground using 2.0 KΩ resistor

▪ Apply power to circuit

▪ Confirm LCD displays a single row of white boxes

▪ Important: Disconnect power before proceeding

▪ Connect LCD pin 15 (A) to 5.0V rail via resistor from LED bag

▪ Connect LCD pin 16 (K) to ground rail

▪ Apply power to circuit

▪ Verify that backlight is illuminated

▪ Important: Disconnect power before proceeding

▪ Connect LCD pin 4 (RS) to pin PA8

▪ Connect LCD pin 5 (R/W) to pin PA9

▪ Connect LCD pin 6 (E) to pin PA10

▪ Connect LCD pin 11 (D4) to PB12

▪ Connect LCD pin 12 (D5) to PB13

▪ Connect LCD pin 13 (D6) to PB14

▪ Connect LCD pin 14 (D7) to PB15

▪ The code to interface to the LCD is contained in two files:

▪ lcd.c

▪ lcd.h

▪ Copy the lcd.c to the “Src” folder

▪ Copy the lcd.h to the “Inc” folder

▪ Select the “C/C++” perspective

▪ Select the “main.c” tab in the editor

▪ After line 26 (USER CODE BEGIN Includes), add the following line:

#include "lcd.h"

▪ After line 98 (USER CODE BEGIN 2), add the following four (4) lines:

▪ Comments are optional

LCD_init();

LCD_puts(" This is a test");

LCD_xy(0, 1); // 1st column, 2nd line

LCD_puts(" dalewheat.com");

▪ Connect ST-LINK/V2 adapter

▪ Click the “Debug main.c” toolbar icon

▪ Once the Debug perspective loads, click the “Resume (F8)” toolbar icon

▪ The LCD should initialize itself and then display a message

▪ Once you’ve memorized the message, press the “Terminate (F8)” toolbar icon

▪ In this class we learned about the tools used to develop code for the STM32

▪ We used both internal and external devices to demonstrate code operation

▪ Breadboards and wire jumpers were used to quickly prototype new circuits

▪ You can learn more about STM32 on the STMicroelectronics’ web site:

▪ st.com/stm32

https://www.st.com/stm32

▪ What did you learn?

▪ Did you enjoy this class?

▪ Would you like to attend similar classes in the future?

▪ Were your expectations of this class met?

▪ What other topics would you like to investigate?

▪ Thank you for your participation

▪ February 2019 – v1.0 – original version, using Blue Pill, Atollic TrueSTUDIO,
STM32CubeMX, ST-LINK Utility

▪ October 2019 – v1.1 – Updated for STM32CubeIDE

▪ October 2019 – v1.11 – Minor typos and corrections

